IKs response to protein kinase A-dependent KCNQ1 phosphorylation requires direct interaction with microtubules.

نویسندگان

  • Céline S Nicolas
  • Kyu-Ho Park
  • Aziza El Harchi
  • Jacques Camonis
  • Robert S Kass
  • Denis Escande
  • Jean Mérot
  • Gildas Loussouarn
  • Françoise Le Bouffant
  • Isabelle Baró
چکیده

AIMS KCNQ1 (alias KvLQT1 or Kv7.1) and KCNE1 (alias IsK or minK) co-assemble to form the voltage-activated K(+) channel responsible for I(Ks)-a major repolarizing current in the human heart-and their dysfunction promotes cardiac arrhythmias. The channel is a component of larger macromolecular complexes containing known and undefined regulatory proteins. Thus, identification of proteins that modulate its biosynthesis, localization, activity, and/or degradation is of great interest from both a physiological and pathological point of view. METHODS AND RESULTS Using a yeast two-hybrid screening, we detected a direct interaction between beta-tubulin and the KCNQ1 N-terminus. The interaction was confirmed by co-immunoprecipitation of beta-tubulin and KCNQ1 in transfected COS-7 cells and in guinea pig cardiomyocytes. Using immunocytochemistry, we also found that they co-localized in cardiomyocytes. We tested the effects of microtubule-disrupting and -stabilizing agents (colchicine and taxol, respectively) on the KCNQ1-KCNE1 channel activity in COS-7 cells by means of the permeabilized-patch configuration of the patch-clamp technique. None of these agents altered I(Ks). In addition, colchicine did not modify the current response to osmotic challenge. On the other hand, the I(Ks) response to protein kinase A (PKA)-mediated stimulation depended on microtubule polymerization in COS-7 cells and in cardiomyocytes. Strikingly, KCNQ1 channel and Yotiao phosphorylation by PKA-detected by phospho-specific antibodies-was maintained, as was the association of the two partners. CONCLUSION We propose that the KCNQ1-KCNE1 channel directly interacts with microtubules and that this interaction plays a major role in coupling PKA-dependent phosphorylation of KCNQ1 with I(Ks) activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A molecular mechanism for adrenergic-induced long QT syndrome.

OBJECTIVES This study sought to explore molecular mechanisms underlying the adrenergic-induced QT prolongation associated with KCNQ1 mutations. BACKGROUND The most frequent type of congenital long QT syndrome is LQT1, which is caused by mutations in the gene (KCNQ1) that encodes the alpha subunit of the slow component of delayed rectifier K(+) current (IKs) channel. We identified 11 patients ...

متن کامل

Effects of Antiproliferative Protein (APP) on Modulation of Cytosolic Protein Phosphorylation of Prostatic Carcinoma Cell Line LNCaP

Antiproliferative protein (APP) isolated from conditioned media of two androgen-independent prostatic carcinoma cell lines, PC3 and Du-145 was shown to inhibit selectively cell proliferation of androgen-dependent prostate cancer cell line LNCaP in a dose dependent manner. This protein was further purified with HPLC using hydrophobic interaction column (phenyl 5PW) and was used to study the modu...

متن کامل

cAMP-dependent regulation of IKs single-channel kinetics

The delayed potassium rectifier current, IKs , is composed of KCNQ1 and KCNE1 subunits and plays an important role in cardiac action potential repolarization. During β-adrenergic stimulation, 3'-5'-cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) phosphorylates KCNQ1, producing an increase in IKs current and a shortening of the action potential. Here, using cell-attached m...

متن کامل

Requirement of subunit expression for cAMP-mediated regulation of a heart potassium channel.

Beta-adrenergic receptor stimulation increases heart rate and shortens ventricular action-potential duration, the latter effect due in part to a cAMP-dependent increase in the slow outward potassium current (I(Ks)). Mutations in either KCNQ1 or KCNE1, the I(Ks) subunits, are associated with variants (LQT-1 and LQT-5) of the congenital long QT syndrome. We now show that cAMP-mediated functional ...

متن کامل

Cellular Biology Long QT Syndrome–Associated Mutations in KCNQ1 and KCNE1 Subunits Disrupt Normal Endosomal Recycling of IKs Channels

Physical and emotional stress is accompanied by release of stress hormones such as the glucocorticoid cortisol. This hormone upregulates the serumand glucocorticoid-inducible kinase (SGK)1, which in turn stimulates IKs, a slow delayed rectifier potassium current that mediates cardiac action potential repolarization. Mutations in IKs channel (KCNQ1, KvLQT1, Kv7.1) or (KCNE1, IsK, minK) subunits ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cardiovascular research

دوره 79 3  شماره 

صفحات  -

تاریخ انتشار 2008